Protein transport across the lung epithelial barrier.
نویسندگان
چکیده
Alveolar lining fluid normally contains proteins of important physiological, antioxidant, and mucosal defense functions [such as albumin, immunoglobulin G (IgG), secretory IgA, transferrin, and ceruloplasmin]. Because concentrations of plasma proteins in alveolar fluid can increase in injured lungs (such as with permeability edema and inflammation), understanding how alveolar epithelium handles protein transport is needed to develop therapeutic measures to restore alveolar homeostasis. This review provides an update on recent findings on protein transport across the alveolar epithelial barrier. The use of primary cultured rat alveolar epithelial cell monolayers (that exhibit phenotypic and morphological traits of in vivo alveolar epithelial type I cells) has shown that albumin and IgG are absorbed via saturable processes at rates greater than those predicted by passive diffusional mechanisms. In contrast, secretory component, the extracellular portion of the polymeric immunoglobulin receptor, is secreted into alveolar fluid. Transcytosis involving caveolae and clathrin-coated pits is likely the main route of alveolar epithelial protein transport, although relative contributions of these internalization steps to overall protein handling of alveolar epithelium remain to be determined. The specific pathways and regulatory mechanisms responsible for translocation of proteins across lung alveolar epithelium and regulation of the cognate receptors (e.g., 60-kDa albumin binding protein and IgG binding FcRn) expressed in alveolar epithelium need to be elucidated.
منابع مشابه
Modulation of cellular transport characteristics of the human lung alveolar epithelia
Among the drug delivery and targeting (DDT) routes, lung alveolar epithelium has been given enormous attentions in terms of the delivery of a wide range of macromolecules such as gene- or protein-based nanopharmaceuticals. However, little is known about cellular modulation of lung transport characteristics by endogenous and/or exogenous agents. Thus, in the current study, impact of dexamethason...
متن کاملModulation of cellular transport characteristics of the human lung alveolar epithelia
Among the drug delivery and targeting (DDT) routes, lung alveolar epithelium has been given enormous attentions in terms of the delivery of a wide range of macromolecules such as gene- or protein-based nanopharmaceuticals. However, little is known about cellular modulation of lung transport characteristics by endogenous and/or exogenous agents. Thus, in the current study, impact of dexamethason...
متن کاملMechanisms of alveolar protein clearance in the intact lung.
Transport of protein across the alveolar epithelial barrier is a critical process in recovery from pulmonary edema and is also important in maintaining the alveolar milieu in the normal healthy lung. Various mechanisms have been proposed for clearing alveolar protein, including transport by the mucociliary escalator, intra-alveolar degradation, or phagocytosis by macrophages. However, the most ...
متن کاملAdvances in Brief Protein Kinase C Activation Increases Transepithelial Transport of Biologically Active Insulin1
Protein kinase C activation leads to tight junctional leakiness and, consequently, to increased transepithelial (paracellular) solute flux across epithelial barriers. This leakiness is shown here to result in as much as a 20-fold increase in the transepithelial flux of insulin. Using an epithelial/ fibroblast coculture model, this transepithelially transported insulin is shown to be biologicall...
متن کاملPulmonary epithelial barrier function: some new players and mechanisms.
The pulmonary epithelium serves as a barrier to prevent access of the inspired luminal contents to the subepithelium. In addition, the epithelium dictates the initial responses of the lung to both infectious and noninfectious stimuli. One mechanism by which the epithelium does this is by coordinating transport of diffusible molecules across the epithelial barrier, both through the cell and betw...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Lung cellular and molecular physiology
دوره 284 2 شماره
صفحات -
تاریخ انتشار 2003